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ON TWO - AND THREE-DIMENSIONAL RESULTS
FOR ROTATIONALLY SYMMETRIC DEFORMATION S

OF CIRCULAR CYLINDRICAL SHELLS

by

S. Nair and E. Reissne r

Department of Applied Mechanics and Eng ineer ing Sciences
• UNIVERSITY OF CALIFORNIA , SAN DIEGO

La Jolla , Californi a 92093

ABSTRAC T

Previous considerations by asymptotic expansion p rocedures of the

relation between elas tici ty theor y results  and thin-shell theory results for

the case of rotationa]ly s y m m e t r i c  deformations of an edge-loade d semi -

inf inite circula r cylindrical shell a r e supplement ed by an ana lysis  of this

• p roblem for a shell possessing a lirntt ing-typ e or tho t r opy ,  such tha t t r ansve r se

normal strains vanish identically. It is shown that assuming this kind of

orthotropy has the important benefit of allowing the derivation of exact expres-

sions f or the ed ge zone solu tion con t ribution , when such exa ct exp ressions

are not possible for the problem of the shell with more gene ral p roperties

of the material . —One result of our analysis is an answer to the follow in g

question. Given a shell with arbitrarily prescribed edge disp lacements , what

is the asymptotically exact fo rm of the corresponding conditions for  this same

p roblem , t reated within the f ramework of two-dimensional thin-shell  theory?

A report on work supported by the Office of Naval Research , Washin gt on ,
D.C.
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ON TWO- AND THREE-DIMENSIO NAL RESULTS
FOR ROTATIO NALLY SYMME TRIC DEFO RMATIONS

OF CIRC ULAR CYLINDRICAL SHELLS

S. Nair and E. Reissner

INTRO DUCTIO N

We return onc e more to the problem of rotationally symmetric

defo rmations of a semi-infinite circular cylindrical shell as the simplest

non-trivial example of the relation between three-dimensional elasticity-

theory analysis and two-dimensional thin shell-theory analysis. The f i r s t

paper on this subject [1] considered the problem of the asymptotic dete rmiria-

• tion of a class of “interior ” solutions for the given three-dimensional boundary

value problem and the derivation therefrom of a system of two-dimensional

• shell-theory equations including the fo rmulation of shell-theory boundar y

condition statements from given three-dimensional elasticity-theory state-

ments cf such conditions , fo r the case that these conditions were  s t ress

boundary conditions. A subsequent paper by Reiss [2] extended this work by
considering complete asymptotic solutions , including int e rior solutions and

“ed ge-zone ” solution contributions. The results obtained in this manne r

confirmed the conclusions in [1] in regard  to the problem of two-dimensional

shell theory, while at the same time supply in g si gnificant additional insi ghts

in regard to the nature of the relation between two- and three-dimensional

theory, with these insi gh ts havin g meanwh ile been extended and genera l ized

in important ways by various other wo rke r s , in part icular  by Goldenweiser [3].

• One of the difficulties encountered in the use of an edge-zone solution
contri bution , as done by Reiss [2], consists in the fact that the relevant two-

dimensional boundary value problem for a bi-ha rmonic function defined in a

semi-infinite strip cannot , fo r some impo rtant cases including the case of pure -non
on~~~tr action condi tions and of pure displacement conditions be solved in closed form ,

• and to the extent that this is the case the asymptoti c results which are obtained

remain approximate ra ther  than exact . BY _____

DISTRIB UT~NIAVAItABILIIY cODES
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Given the impossibility of a closed-fo rm solution of the relevant

bi-harmonic problem , as well as the apparent absence of results for the

case of pure displacement edge condition cases , we have recen tly

considered the complete problem by combining inte rior asymp totic

expansions , Raylei gh-Ritz type ed ge-zone solution contributions , and

upper and lowe r bound fo rmulas throu gh use of the principles of minimum

potential and complementary energie s [4]. The principal results of this

analysis consisted in the derivation of upper and lower bounds for the value s

of influence coefficients involved in the solution of the semi-infinite circular

cylindrical shell problem with pr esc ribed ed ge tractions or p rescr i bed ed ge

displacements . All of these bound results were such as to imply the dete r-

mination of exact results for the solution of the three-dimensional p roblem

by means of two-dimensional theory , insofa r as the leading terms in an

expansion of the solution of the three-dimensional problem in powers of wall

• thickness h to shell radius ratio a were concerned. We also dete rmined

supplementary terms for such an expansion , of relative order  h/ a  (including
1

terms of order (h/a)2 which are encountered for some classes of edge condi-

tions), with these supplementary bound te rms being such that in some cases

• there was coincidence between uppe r and lower bound results so that , in
• effect , a determination of exact results , up to terms of relative order
• h / a , was accomplished.

In or der to understand the meaning of these resul t s , as well as the

signif icance of th e analysis which follows it is convenient to interpret the

leading-term results as exact results for an infinitely-thin shell (that is , for

• a shell for which h/a-.0) , with the supplementary terms representing the

effects of finite thickness. There are altogethe r three distinct effects of

fini te thickness.  The f irst  of these is a geometrical effect , having to do wi th

the change of width of shell elements with di stance from the middle surface

• (s o that this effect is absent for  the special case of a fla t plate).  It is known

• that this effect is taken account of properly (assuming absence of the other
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• two) in a refined two-dimens ional shell theory associated with the names of

• Fl~igge , Lurie  and Byrne .  The second effect is the effect of t ransverse

normal stress defo rmability ~ ‘hich is absent for the case of a l imit ing- type

• orthotrop ic mate r ial unable to sustain t ransverse  normal s t ra ins ) .  It has

ear lier been shown that this effect  is of the same orde r of magnitude as the

geometrical FLB effect [1], and our recent work [4] indicates tha t for  some

classes of ed ge condition this effect come s out to be of relative orde r ( h / a ) 2

(without these term s bei ng of numerical  si gn if i c a n c e , however , in comparison

with the co-existing h / a - o r d e r  effects) .

• The third of the effects of f inite thickness is the effect of t ransverse

• shear deformability. This effect too comes out to be of relative order  h/ a .

We are not concerned he re with the consequences of this effect , in re ga rd  to

the order of the d ifferential-equation system and to the numbe r of the asso-

cia ted boundary conditions , as discussed most simply in recent work dealin g

with the subjec t of plate s [5]. Rather , we are concerned wi t h this effect
• from the point of view of its relative numerical dominance in comoarison

wi th the other two , as revealed by our upper and lower bound calculations [4].

Having previously obtained upp er and lower bound results for the

th ree ef f ects of geomet ry, t ransver se normal s t ress  defo rmabili t y, and

transverse shear defo rmability, wit h these three effects being addit ive up to

orders  of magnitude which are  of pr imary interes t , we now undertake an

asymptotic analysis of two of the three effects , these bein g the effects of

tra nsverse shea r de formabili ty and of geometry. Our analysis is based on

recognition of the fact that it is possible to derive exact solutions for  the
• two-dimensional semi-infini te  strip problem governing the edge-zone

solution contr ibut ion , upon assuming a l imit ing-type or thot ropy in such a

manne r that t ransverse  normal s t ra ins  vanish identicall y.

Having the existenc e of these exact solutions for the ed ge-zone

contributions involved in the asymptotic expansion procedure ,  we are

now in a pos i t ion  to ve ri fy and , in p r inc iple , to r efine the resul ts

of our upper and lower bou nd analysis .  Beyond this , we are able to obta in
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results for  types of boundary conditions which do not fall within the scope

of the indicated bound solutions. To mention a specific example , our anal y s i s

pe rmits us to solve a problem which has long been of in te res t  to us but for
which until now no rational solution has come to our at tention.  The problem
is as follows . Given a semi-infinite circula r cy l indrical  shell , wi th a r b i t r a r i l y
prescribed edge disp lacements as loading conditions. To be determined is the

asymptotically exact fo rm of the corresponding conditions of the f i r s t-o rde r
inte ri or solu tion cont r ibu t ion , to wi t the appropriate form of the correspond ing
boundary conditions for this same problem , t reated with in the f ram e work of

standard two-dimensional thin shell theory.

FORMULATION OF THE PROBLEM

W e take as di fferential  equa tion for symmetrical def ormations of

circula r cylind r ical bodies a sys tem co nsisting of the equi l ibr ium equations

ra + (r T )  = 0 , rT + (ra ) - = 0 , (2 .1)
• X ,X , r ,X r , r 8

in conjunction with stress strain (displacement) relations of the form

a - jia a a -p a  a
- 

e r 8 x r
- 

E 
t/

r E  ‘ r - E 11
r Em m

r x ~ rv — - LI , u +v = , (2 .2 ), r E r E , r , x Gr in

where E = (EE ) 2 , with positive E, E and C, and wit h the additional s t ra in
energy positive -~definiteness conditions v~ < 1 and 2v < 1 - v.

The system (2. 1) and (2.2) is to be solved in the region 0 � x <~~~,

a - c ~ r ~ a + c subject to face boundary conditions

r = a ± c :  a 0 , 0 , (2 .3)

subject to edge boundary conditions “a t infinity ” which for  all cases are taken
• in the form

X 4~~~ u 0 , v 0 (2 .4 )
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and su bjec t to ed ge bounda ry condi t ions at  the loaded ed ge of the shell , of

the fo rm

(u = a  , or a = 5
x = 0: ; , r , r — 

(2.5)
• v = v  , or r = i .

with the ri ght hand side s in these four relations being p resc r ibed  functions
• of r , subj ect only to the r es t r iction that j~~

+C (r / a )~T dr = 0.

Within the frame work of the above class of three-dimensional  problems

(wh ich because of the assumed absence of any 8-dependence of the solutions

formally reduce to a class of two-dimensional problems) we are part icularly

concerned in asymp totic reductions to two-dimeri sioriality (with this reduction

here fo rmally to one-dimensicuality) for  the determination of the weighted

stress avera ges

•a+C •a+c
M = j ( r /a )a (r - a)dr , Q = J ( r/ a )r dr  (2. 6)

a-c a-c

and for the determination of disp la cemen t measures  such as ,

V = v(x, 0) , = u ( x , 0) , (2 .7 )

with these reductions being of technical significance for  “ s uf f i c i e n t l y small”

value s of the wall thickness-diameter ratio c/a of the shell.

In association with the de rivation of a system of two (here one) -dimen-

sional diff erential  equations for th e quant ities M , Q, V , ~ it is necessary to

also derive a system of suitable ed ge condi t ions , involvin g the functions

a r ’ ‘
~~
‘ ~x’ T whic h appear in equations (2. 5). One expects , and this has been

shown to be true in [1] and [2], that insofa r as the traction condition por t ions  in

(2 . 5) are concerned the equivalent lower-d imens ional ed ge conditions are  of the form

x = 0: M M Q = Q (2 .8a)

with M and Q defined in te rm s of ~ and T in accordance with  equat ions  (2 . 6).x x

One also expects , and this is gene rall y considered to be cor rec t , that

wh en the dis place m ent conditio n por t ions  in equations (2. 5) are such that ‘
~ , r

-5-
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as well as v are independent of r, then the equivalent lower-dimensional

edge conditions are of the form

x = 0 :  V v , ~~~= u  . (2 8b)

We will , in what follows , re -confirm the asymp totic val idi t y of the above

expectation , within the frame work of the restrictions associated with the

na ture of the analysis which is here carr ied out . Ove r and above this result ,

howeve r , we will establish the fo rm of the edge conditions for “ effective ”

measures V and ~~, not necessa rily identical with these measures  as de f ined

in equations (2 .7 ) ,  wh ich are valid in th e event that a and v are  other than indepen-

dent of r . An example of thi s na ture which will be considered explicitly is

the case whe re a is assumed to be p roportional to (r - a) 3 in place of the usually

assumed linear dist ribution.

DIFFERENTIA L EQUATIONS AND BOUNDARY CONDITIO NS

FOR TRANSVERSELY INEXTENSIONAL DEFORMATIONS

The case of t ransversely inextensional deformations is given upon
setting

E =
~~~ (3 .1)r

in the stress s t ra in  relations (2 .2). These may therewith be writ ten in the form

Eu = a - , Er 1v = a -

,~~ 8 x
(3 .2)

v = 0 , G(u + v  ) = r, r • , r , x

where it will be assumed fr om h e re on that E , V and C are  independent of x and r .

Our f irst  conclusion is now that th e t r ansve r se  disp lacement component
does not vary across the thickness,

v = V(x) ( 3 . 3 )

and that , associated th erewith , the t ransverse  no rmal s t ress  com ponent ~r
assumes the character  of a reactive quanti ty .

In orde r to solve the r emai nin g boundary va lue p roblem , we be g in by
satisf y ing the f i r s t  of the equilibrium equations (2 . 1) by means of a s t ress

-6~



function W , iii the fo rm

ra = a~’ , r1 = -a’!’ , (3.4)
x , r

where the facto r a on the right hand side has been introduced to make the w r i t i n g

of some of the developments which follow somewhat more convenient .

We next us e the second of the s t ress  strain relations ( 3 .2) ,  in conjunction

wi th equation (3. 3) in orde r to wr i te for the c i rcumferent ial normal s tress ,

= ~a’I’ + EV . (3 . 5)8

With the above expressions for a 9 and T , we obtain f rom the second

equilibrium equation in (2 . 1) as an expression for the t ransverse  no rmal s t ress

a -which satisfies the condition of vanishing a for r a - c ,r r
r r

ra = a$ (‘I’ + pr~~’!’ )dr + EVJ’ r 1dr • (3 .6)r , xx , ra-c a-c

The condition that a must also vanish for r = a+c g ives as one of two equations

connec ting the two functions ‘I’(x , r) and V(x)

= 0 . 

• 

(3. 7)

A second equation connecting ‘I’ and V fol lows upon exp r e s s i ng u r in te rms

of ’I ’and V in accordance with the last relation in ( 3 . 2 ) ,  in conjunction with (3 .3)

and (3.4) , as

‘I,
u -V , (3 .8 ), r ,x r G

and by combining this result with the f i r s t  relation in (3. 2) ,  wr i t t en  in the fo rm

Eu = a - , wit h a and a taken from equations ( 3 . 4 )  and (3 . 5).  The, xr x, r ~ , r x 8
ensuin g d ifferential  equation may be wr i t ten  in the fo rm

1 -  

~~~~~ 
÷~~- W  +~~v + !_v - 0 (3 .9 )E , rr r C , xx a , xx ra

Having equat ions (3. 7) and (3 . 9 )  it r emains  to state bounda ry condi t ions  in

terms of ‘I ’and V , in accordance wi th the remainin g face boundary condi t ions

-7-
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in (2. 3), w hich concern r , and in accorda nce with the edge conditions as stated

in Eqs. (2.4)  and (2 .5).

We begin by satis fyin g the ed ge condition at inf inity by stipulating

‘t’(~, r) = 0 , V(~ ) = 0 . (3. 10)

• . • .With this , and wi th ooservation of the relation ,, ( r / a )a  dr = 0 , the f acea-c x
boundary conditions 1’(x , a ~ c) = 0 take on the form

a ~ c) = 0 . (3. 11)

Finally, the conditions (2 . 5) for  the loaded ed ge of the shell become

&
a , x - , r xV +— —  = -u or — =, x G r , r — r a

x = 0: (3 .12)

V = V  or I $ d r = -Q
— .1 , ra-c

We note that in wr i t ing  the second set of conditions in (3. 12), we have taken

account of the fact that the assumed propert ies of the mate rial require that  the

p rescribed t ransverse  dis placement be independe nt of r and so may be

written, in con sis tent fash ion , as V . and tha t at the same time this specialization

of properties implies a sensitivity of th e medium to th e resultant ~ of the ed ge

stresses ~ only, rather than to the detail s of a prescribe d i-d i s t r ibut ion .

• 
• 

STIFFNESS AND FLEXIBILITY COEFFIC IENTS

In accordance with our earlier work in [4], we define gene ral s t i ffness

coefficients K , with reference to the p roblem of p rescr ibed  ed ge displacements ,

for the case that u r = 
~~o and V = -V, ~y mea ns of relations of the form

M (0) = ~~~~ - K
~ vV , Q( 0 ) = Kvv lT - Kv~

5 (4 . 1)

• where Kv~ = ~~~~

At the same time we define a specialized system of such coefficients for

mixed ed ge condition problems , as follows

-8-



M (0) = K ~ (when ~ = 0)
x ~~~O (4. 2)

0(0) = KVVO (when~~ = 0)

Insofar . the problem of prescribed edge tractions is concerne d , we

have earlier [4] defined flexibility coefficients C with reference to traction

dis tributions (r / a) c7
~ 

= (3M 0/2c 3)( r - a) and (r / a )T  = (3Q 0/4c) [ l  - (r - a) 2 /c2],

and weighted edge displacement ave ra ges

= 

~~~ S::
1 - (r 

~~
a )2 

Iii dr V: = _ _j [i - 
(r  ~~

a) 2
]Vd~ , (4. 3)

in the fo rm

= C~~~~M + CMQQ = C~~~~M + CQQ
Q (4 .4)

with these relations being “nearly ” the inverses of equations (4 . 1) , upon the

identif ica tions = 
~o ’ ~ = V , M (0) = M and Q(0) = Q .

The pr inc ipal aim in [4] was t~~ deduct ion of upper and lower bounds for  the

coeff icients K and C , wit h these bounds depending on the geometrical  paramete r

c/a , as wel l as on the materials property pa ramete r’s E , E/G , E/E , Li and v .

Amon g th e cha racter ist ics  of these bound relat ions the followin g a re  noteworth y.

1. In the limit c/a-.0 , our uppe r and lower bound value s coincide with

each othe r and wi th the co rr espondi ng values of what may be called f i r st - a pprox-

imation classical thin shell theory results .

2. For sufficiently small finite values of ~/a our bound values

involve additive te rms of relative orde r (c /a )2  and of relative order  c/ a .
1

The te rm s of order (c/ a) 2 represent t ransverse  no rmal strain effects alone , while

the te rm s of orde r c/a represent tr ansverse normal strain effects , as well as

t ransve r se shea r in g s t rain effects , and also geometrical effects of the F1~igge-

Lurie-Byrne type . The numerical ly dominan t of these three  effects is the trans-

verse shearing strain effect , even though this effect  doe s not contain any

• ( c/a) 2 -co ntrj but ions ,

Insofa r as the determination of st iffness and f lexibi l i ty  coeff ic ients

is Con cer ned the present  anal ys is  enables us to ob tain exact value s of all
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~~~~~~~~
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_ •

• 1
con t ribut ions c’~ re lative orders  (c/ a) 2 and c/a  (as well as exact values of con t r i -

butions of hi gher order in c/a should we so des i re )  subject  only to the r e s t r i c t ion

E r = ~~ While it is possible to do ~his for the en t i r e  set of ten coeff ic ients

defined in equations (4.1)  to (4 .4) ,  th e necessary  anal ysi s w ill be car r ied

out in what follow s only to the extent of obtaining expressions for K~~~, K v~
and K~ .

THE NON-DIMENS IONALIZED BO UN DARY VALUE PROBLEM

We introduce a non-dimensional axial coordinate ~ and a nondimensiona].

radial coordinate 17, measu red from the middle surface of the shell , by writing

x = b~ , r = a + c17 , (5. 1)

with b being in the na ture of a characte ristic length , to be chosen presently .

We further set

( 1 - LI 2)’I’ = E”I’0g(~ , 77) , V = V F ( ~ ) , (5. 2)

where ‘I’ and V r emain to be chosen and we define dimensionless pa r a m e t e r s
0 0

p and a in the fo rm

P = c/a , ( 1 - V 2)a~ = E/G . (5. 3)

Indi cat in g now dif ferentia tions wit h respect  to ~ and 77 by primes and
dots , res pectively, the two dif fe r ential equations (3 . 7) and (3 . 9) for  ‘I’ and V

take on the f ollowin g form

~~j [ ~~ g” +~ -j -~ °
Qfl)2 g ] d 7 7 + V [ ( l  - p 2 )p ~~~~~ 

~~~ FJ = 0 (5.4)

• 
~ 0[g~ - ~~~~ + a~~~.g ”] + V [ ~~~(l + P77 )F” + 1 ~~~77

F} 0 . (5 .5 )

At the same time the face boundary conditions (3 . 11) become

• g(~ , ± 1) = 0 , (5.6)

and the ed ge boundar y condi t ions a t inf ini t y be come

• g(~ , 71) = 0 , F(~~) = 0 . (5 .7)

-10-



Insofa r as the boundary conditions (3. 12) at the loaded edge are

concerned , we will lim it ourselves in w hat f ollows to the conside r a t ion of

• just two of a total of ei gh t possible cases , bo th of them concernin g p roblem s

with prescribed axial displacements as expressed in terms of the slope func-

tion u r ’ wi th the other condi t ion bein g the dis placement condition of vanishing

or the traction condition of vanishing Q. Expressed in term s of g and F this

se t of condi t ions takes on the fo rm

cr2 V 
/ -

~ + ~~ 
g (0 , 

~~~~ 
+ 

~~~~~~~~~~~ 
~~~~ = ~~~~~ r (5 .8)

• F(0) = 0 or , f g ’(O , 77)d?7 = 0 . (5 . 9)

Expressions for the st resses  a , r , 
~j , and for the s t ress  resu 1t~ nt Q and

• the stress couple Mx follow from equations (3. 4),  (3. 5) and (2 . 6) as

- 
E 0 g~ — 

E 0 g (5. 10)
a - l _ ? ,2 c l + p 7 7  ‘ 

- l _ L )2 b l + p 7 i

V ‘I,
o F E o L I ga 9 = E— 1 + P77 + 1 - LI2 ~~ i + P77 ‘ 

(5. 11)

E’I’c 1 ‘I~ c~~ i
M = - 

~ 

°
~~~ j gdT7 = - 

E 
LI2 ~ 

j g  ‘d77 . (5. 12)

We l is t  additionall y as expression for the c i rcumferent ia l  s t ress  resultant

N 9 = J C a
9dr ,

N 9 = EV P2n F - 
0 J , (5. 13)

and we shall not concern ourselves , in wh at follow s , with the complementa ry

expressions for a and M 9.

INTERIO R AND EDGE ZONE SOLUTIO N CONTRIBUTIONS

We accept as known the fact that the solution to be obtained w ill , fo r

sufficientl y small values of p , be composed of two contributions , one of th em

— 11—
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being an “interio r ” contr ibut ion g. ,  F., wit h charac ter i s t ic  length b = b . = (ac) 2

and the other an “ed ge zone ” contribution g ,  F , wi th charac ter i s t ic  le ng th
b = b = c. We note that in this way F . = F.(t ) and F = F (

~ 
),  etc . ,  bute I i i  e e e

we shall refrain from making the distinction be tween 
~~~

. and 
~e explici t , as this

• will caus e no di ff iculty as the analysis proceeds . With 
~i’ ~e and 77 defined in

this manner , and in view of the form of the differential  equations and boundary

conditions for ‘h and F, we are in a position to s tipulate th e basic orde r of
magnitude relations

F., F , g~, g~ , g~, g~ , F ’, F ’ = 0(1) , (6. 1)

and we shall wri te , in place of equations (5. 2),  so as to make the di stinction

between the two solution contributions explicit

(1 - i’
2
)’!’ = E(’!’.g. + ‘ h g )  , V = V .F. + VeFe (6. 2)

with the form of the two differential equations for  the set g ., F. and for the

set g ,  F being dist inct , to the extent that this is required to account for  the

difference between b. and be

Setting b = b. = (ac)2 , we obtain f rom equations (5 .4) and ( 5.5)

+ (1 ~~~,7)2 g .] dt7 + v .~~[1 
~~~n ÷ 

~ F~] = 0 , (6 .3)

- 
1 ~77

g: + a2 pg~] + V .~ [(l  + P77) F~ + 
~ ~~~~~~~ = 0 . (6. 4)

Setting b = b = c , we obtain instead

+ g ]d77 + V P 2[ l V~~~~ 
~ ~ F ]  0 . (6 .5)

‘heig; - 
~77

g + a2 g~ ] + V [(l  + p 77)F ” + 1~~~~77
F ]  = 0 . (6 .6)

In view of the difference between 
~~

. and 
~e ’ th e funct ions  g. and g must
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Individually satisf y th e f ace bounda ry condi t ions

17 = ± 1: g. = 0 = 0 , (6. 7)

and for the same reason the edge conditions at inf ini ty  (5 .7)  must  be sa t i s f ied

individually,

g. = 0 , g = U , F. = 0 , F = 0 . (6 .8)

• With g. and F., and g and F , sofar bein g subject  to a system of

uncoupled requirements , there remains only the system ed ge loadin g conditions

(5.8) and (5.9) to accomplish the necessary couplin g for  the dete rmination of the

two sets of functions . We find that equations (5 .8 ) ,  a gain with b . = (ac) 2 and

b = c , takes on the form
e

1 ~77 [’I’.p ~ g ’(0 , v7) + ‘h g ’(0 ,77 ) J + V~P 2F ’(0) + VeF~
(0) = _ca

, r . (6.9)

and equations (5. 9) take on the form

V.F.(0) + V F (0) = 0 , (6. b a )
• i i  c c

or

$ [~ .~~ g.’(0 , 77) + ‘~~g ’(0 , 77)]d 77 = 0 . (6. lOb)

r —1

Having the relations (6 .2)  to (6. 10) our next step is an appropriate

disposition of the f ou r scale factors ‘I’j~ ‘I’ , V~, V .  We be gin by observing

tha t in orde r to be able to satis fy the face boundary conditions (6. 7) in such

a way that not only the functions g. and g ,  but also the fu nctions F . and Fe
are involved it will be necessary to have the te rms with g ” in equations (6. 4)

• and (6.6) of the same order of ma gn itude as the te rms wi th  F” in these equa t ions .
Accordingly, we get

• ‘t’. = PV . , ‘I’ = V (6. 11)
1 1 e e

Introduction of (6. 11) into the ed ge conditions (6. 9) and (6. 10) then gives
fur ther

— 13-
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• V1
p3[F~(0) + 1

a
÷
~~~ g~(0 ,77 ) ] + V [ F ’(0) + 

~ 
-~~~g ’(0 ,77 ) ] = -cu r (6. 12

with (6. lOa) remaining unchanged , and equation (6. lOb) assuming the fo rm

= 0 . (6.13)

Having equation (6 . 12), we now impose th e requirement  that both in te r io r
and ed ge-zone solution contributions pa rtici pate in the sa tisfaction of th is non-
homogeneous ed ge condition. This means that we must have

1
V.P = V (6.14)e

Finally , we introduce a wei ghted avera ge , ~~, of the variation of ed ge

rotations in thickness direction by writ ing

= -~ s(~ ) (6 .15)

with

- 772 s 7 7 d 7 7  = = -~ .J
_~( 1 - 77

2 )& r dfl (6. 16)

(so that ~ = ~ when u = -8 = const .) .o , r 0

With (6. 14) and (6. 15) and with the fur ther  sti pulation that

• 
~ e = ~~ (6.17)

the nonhomogeneous ed ge condition appears now in the fo rm

F (O) + 
~~~~~~~~~~~~ 

+ F ’(O) + 1~~~~77
g ’(O ,77 ) = s(~ ) (6. 18)

and the homo geneous ed ge conditions (6. 13) and (6. lOa) become

F.( O) + p 2 F (O) = 0 , (6. 19a)

or

J’
1

1pg.’(o ,n) + g ’(O ,~~)Jd77 = 0 . (6. 19b)
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Equa tions (6. 18) and (6. 19) are to be used in conjunction with the

consequences of introducting (6 . 11) into equations (6 .3 )  to (6 . 6 ) ,  that  is

in conjunction with two systems which may be wr i t ten  in the form

. 1 ~~2 1+  i L ’g. d77
j g ~d77 + 1 - ~ F. + ~ + ~~~ 

=

g - L.’F . (6 .20)

+ F~’ + p[a
a g~ + - 

+ p~
7 L] = 0

and

j g ” di~ + P 2[J 
~~~~~~~ 

+ 
1 ti~~f l l + 

~ F] =

-1 -1 
(6. 21)

I g PLIF
+ a2 g + F’ ÷ ~ 1 ~77 + 77F + 1 + p]~~ 

= 0

The solution of (6. 20) and (6 .21) ,  subj ect to the ed ge conditions (6. 18),

(6. 19) and (6.8) and subject to the face bounda ry conditions (6.7)  is to be

introdr ced into equations (6 .2)  for ‘I’and V. Upon taking account of the re lations

(6. 11), (6. 14) and (6. 17) we have then

(1 - ~
2)’I’ = Ec8(g + p 2 g.) , V = ~J~~ 8(F . + 0 2 F )  . (6. 22)

Furthe rmore , introduction of ‘h and V from equation (6 . 2)  into equat ions (5. 10)

to (5. 12) gives as expressions for s tresses

= 
E8 g~ + p+g~ 

= - 
E8 g ’ + Pg 1

’ 
(6 23)X 1~~~~~~ tI2 1+  p77 ‘ 1 - V ~~ 1 + P 7 7  ‘

I I
g + P 2 g~ P 2 F. + PF

a = E8 ~ e 1. 
+ 

I e 
, (6. 24)9 1- i . ’3 l + p i 7  1 -F pfl

• and as expr essions fo r the s t ress  coup le M and the s t ress  resultant Q ,

M = - 
E~ C2

3 f ( g  + p2 g .)d 77 , (6. 25)

0 = - 1 _ 1 12 j ’ (g ’ + pg )d~ , (6. 26)

-15-
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We note that while the above fo rmula s fo r  M and Q give thex
impression tha t the edge-zone solution contr ibut ion g makes a dominant

contri bution to these quant i t ies—which , if t rue would de t rac t  much f rom the

significance of conventional two-dimensional shell theory—we will find short l y
that J’1g dip comes out to be of a smaller order  of magnitude in P than P 2

~~~g. dip,
so that no problem of this sort does , in fact , arise.

• Beyond this we may also note that the differential equation for  g in

(6. 21) is effectively of second orde r , in place of a four th-orde r bi-harmonic

• problem which is encountered in the analysis of the corresponding problem

for an isotropic homogeneous shell medium. It is this difference in the order

of the differential-equation problem for the edge-zone solution contribution
which makes possibl e an exact solution of the complete pro blem for the case
of the transversely inextensional medium.

PARAMETRIC EXPANSIONS FOR INTERIO R AND

EDGE-ZONE SOLUTION CONTRIBUTIONS

As insp ection of the diffe r ent~~1 equations (6 . 2 0)  and ( 6 . 2 1 ) ,  in conjunction

with the boundary conditions (6. 7), (6. 8), (6 . 18) and (6 . 19) indicates the possibil i ty
of an expansion of the solutions in powers of the pa rameter P 2 .

F = F + p 2 F + p F 2 + . . .  , g = g0 + p 2 g1 + p g + . . .  , (7 .1)

and observi ng that ( l /P ) 2n [ ( l  ÷ P ) / ( 1  - P ) ]  = 2[l + P2 / 3  + ...], we have then from
equations (6. 20),

J g ~~d77 + 2(1 - V 2)F. = 0 , g ’ + F~ 0 ; n = U , . 1  , (7. 2)

g~~d77 + 2(1 - 11
2 ) F . = _ L I

f 
g. dip ; n = 2 , 3

(7 .3 )
if 2 f fg. + F. = g~ - a g. - 17F. - i/F.

UI tfl in-s tn-a in-s I fl-2

Excep t for the form of (6. l9a) this expansion would be in powers of p . r a t h e r
.1

than p 2~ This means that when (6. l9b) applies , one -half the te rms in our
expansion will vanish automa ticall y.

-16-



with analogous relations for n = 4 , 5, . . .,  which will not be ut i l ized in what

follow s , and equations (6. 21) give in the same manne r

J g ’ diP = 0 , g;~ + a2 g’ + F’ = 0 ; n = 0 , 1 , (7 .4)

1$ g M dip = 0 , g~ + a 2g TM + FTM 
= g~ - 77FTM ; ii = 2 , 3 , (7. 5)

en en en en en-a en-a
—1

= g dip - 2(1 - 112)Fe n 4  ; n = 4 , 5 . (7.6)~

The associated boundary conditions which follow from (6. 7) and (6. 8) are

= ± 1: = ‘ = 0 , (7 .7 )

= g. = 0 , g = 0 , F. = 0 , F = 0 . (7 .8)In en in en

The couplin g between in ter ior  and ed ge zone contr ibut ions will be effected

in the process of sati sfying the boundary conditions for  the loaded ~-~ge of the

shell which follow from (6. 18) and (6. 19) in the form

F~’ (0) ÷ F ’ ( O) + a2 g~ 0(0 , 77) = s(77) , (7 .9a)

• F.’ (O) + F ’ (O) + a 2g~~(0 ,fl) = 0 , (7.9b)

F (0) + F ’ (O) + a2g~~ (0 ,77 ) = a27pg ’ (O , ip) - a2 g ’ (O , Tp) ; n = 2 , 3 , (7.9c)

• and

F10(O) = 0 , F1~ (O) + F (8) = 0 ; n 1, 2 , 3 , ... (7. 10)

• or

J g ’ (0 ,ip )d 77 = 0 ; n 0 , 1 , • ( 7 . l l a )

It is in this one place tha t we r equi re equa tions fo r  n 4 , 5, in o rder  to complete
the determination of our expansions terms upto n = 3.

-17-



= -j  g ’ (0 , i7)drp ; ri = 2 , 3, . . .  (7 . l lb )

DETERMINATION OF IN TERIOR SOLUTIO N CONTRIBUTIO N TERMS

W e be gin by dete rmining the interio r solution contr ibution to the extent
that this is possible without bring in g in th e fo rm of the associated ed ge zone

solution contribution.  In doing this we will a r r ive  at a set of ordina ry differen-

tial equations fo r the dimensionless deflection functions F. , with F. bein g
Lfl 10

equivalent to the corresponding function in accordance with conven tiona l two-
dimensional sh ell theory, with F~ accounting—fo r the effect of deviating from

the “conventional” assumption of an ip -independent ed ge slope function 5 (77) , and

with F. accountin g for th e ef fects of t ra nsverse  shear defo rmation and of
12

element width change s in the same manne r as previously found in [ i) .

W e complement these results by the discovery of the complete sys tem

of boundary conditions for F. ,  for  an a r b i t r a rily p r e s c r i b e d  ed ge slope funct ion

~~~ 
through use of the differential equations for the ed ge - zone solut ion con t r i-

butions , h~~t without having to determine any part  of the edge-zone  port ion of the
solution of the complete problem .

Considering the fact that F. = F. ( ~ ), we find from equations (7 .2 ) ,  in

conjunction with the appropriate statement in (7. 7) the simp le result

g. = 
1 - 71 F# 

, F~~ + 3(1 - L12 )F . = 0 ; n = 0 , 1 . (8 .1)in in in in

In the same way we find from equations (7. 3) and (7. 7) ,  and with
(1 - 1/

2)0 2 
= E/G ,

g. = 
- 

+ 
~
‘ - 

F~ + ~~~ 
77

2 
- ~~ 5 - 6i1~ + ~~~ 

Fin 2 in 3 ifl-2 2 G 8 / in-2
(8 . 2)

FIV 
+ 3(1 - 11

2 ) F . = 

~~ 
- 2LI) F~’ ; n = 2 , 3in in 5G

We now turn  to the fo rm of the boundary condi t ions  for  the funct ions  F.
We find from (7. 8) the obvious r equi rements  of vanish ing F. (and F ’ ) for  

in

= ~~. As fa r  as condi t ions  for  ~ 0 a re  concer ned , we have as one of the two
conditions for F , ,  for one of the two cases considered in (7. 10) and (7. 11) ,  t ha t
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F. (O) = 0. The other conditions , in accordance with ( 7 .9)  to (7 .11)  all appea r

to require the simul taneous deter mination of F and g . We will show next how
en en

to avoid this complication to a si g nif icant extent .

DERIVATIO N OF BOUN DARY CONDITIONS FOR F. , WITH OR WITHOUT
In

IN VOLVEMENT OF EDGE-ZONE SOLUTION CONTRIBUTIO N

W e begin by observing that equations (7. 4) and (7. 5), in conj unction wi th

the condi tions g~~ (~ , 71 )  = g ’ (~ , ?7) = 0 imply the rela t ions

~~~g ( ~ , 77)d77 = $ g ’ (~~, i1)d77 = 0 , (9. la)

for n = 0 , 1, 2 , 3. Fur thermore , from (6. 21),

= (1 - V
~ ) S F eo (

~
)d

~ . (9. lb)
-1.

~‘t h  the help of (9. 1), and th rou gh use of the f i r s t  re la t ion in (8. 1) and

(8. 2), we may wri te  the set of conditions in (7. 10) and (7. 11) in the form

F. (0) = 0 , or F~” (0) = 0 , (9. Za)

F. (0) = -F (0) , or F.M’ (O) = 0 , (9. 2b)
ii eo — ii

F. (0) = -F (0) or F”’ (0) = ~~ - F .’ (0)in en-i — in ~5G / in

— 3(1 - v 2) j F  (~ )d~ ; n = 2 , 3 . ( 9 .Z c )

It r emains to establ ish a second condi t ion at ~ = 0 for  F . ,  th rou gh use

of equations (7. 9), wi t h a view towards let t ing this  condition to be as much as

possible a condition for F.’ (O) ,  in terms of given quant i t ies .  In o r d e r  to accom-

plish this  purpo se , we consider an in tegra te d version of the edge - zone d i f fe ren t ia l

equations (7.4) and (7 .5 ) ,  with an appropriate we igh t ing  func t ion , as follows.

We wri te , as a conse quence of equation (7. 4) ,

- 19-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- 7p2)( g + a2g ” + F’ ) dip = 0 ; n = 0 , 1 . (9. 4)

In this we wr i te  f i r s t ,

• 1 . 1

- 712) g~ d17 = [(1 - ‘7

2)g~~ + 2ng~~ ] 1 
2 j g  dip , [I

wi th the conclusion , which follow s from (9. 1) and (7. 8), that

1 ( 1  - ip 2 )g~ dip = 0 . (9 . 5)

Introduction of (9.5) into (9.4)  and observatio n of the ed ge conditions at infinity

then gives fur ther

- 71
2)(a 2g ’ + F ’ )dip = 0 ; n = 0 , 1 . (9. 6)

Upon using (9. 6) ,  in conj unction with (7. 9a , b), we o btai n as condit ions f o r

F ’ and F.’ ,to u.

F.’ (O) 1 , F.’ (O) = 0 , (9 .7a , b)

and we see that , in f act , the dete rmination of F. may in all cases cons ide red

her e be carr ied ou t without explicit reference to the ed ge zone contr ibut ion to

the complete solution of the problem.

It suggests itself to see to what extent application of the same procedure

to the differential equations (7.5)  may make possible a reduction of the bounda ry

conditions (7 . 9c) which involve F.’ and F.’ . We find f i r s t , p roceedin g in the

same way as in going from (9.4) to (9 .6) ,  and observing that 77F” is an odd

function of 77 , that now

- ip 2)(a 2g’ + F’ )d77 = ?7g dip , (9 . 8 )

for n = 2 , 3.
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Evidently, equation (9. 8), tog ether  wi th the ed ge condit ions at inf ini ty ,

allows us to conclude that

7 

$
‘

(l - i7~ )[a 2g ’ (O , i7) + F ’ (O)Jdip -2~ t p f g (~ ,77 ) d~ d77 , (9.9)

for n = 2 , 3. Therewith , and with the consequences of the f i r s t  relation

in (8. 1), we obtai n altogether that

F~~(0) = - F (0) + } $ $ ( ~, ip)d~ dip

+ —~~~ _~
ip - ip °)g~~~~2

(0 , ifldip 
‘ (9. 10)

for n = 2 , 3. We note as a very important consequence of (9. 10) the fact that

wh en~~~ is an even function of 77, which is the case when s(77) is even , then the

integral  term s on the r ight  vanish for n = 2 and we have a boundary condition for

F. as well which is f ree  of any reference to the ed~ e -zone solution cont r ibut ion .
12

EXPANSIONS FOR DEFLEC TION , AXIAL BENDIN G MOMENT I~ND

TRANSVERSE SHEAR STRESS RESULTANT

In orde r to see the possibility of dete rmining M and Q, and also V , for

the conventional displacement boundary condition case of an 77-independent ~ r
upto term s of relative orde r P ,  solely on the basis of a determinat ion of the

interior solution contribution we rewrite our ea rlier expressions for these

quantities as follows.

On the basis of equations (6. 22~ and (7. 1),

1 !  1
V = -8c 2 a 2[F . + p 2 (F . + F ) + p(F . + F ) + . . .1 . (10. 1)to ii eo i.a ei

On the basis of (6 .25) ,  (6 .26) ,  (7. 1), in conjunction wi th equations (8. 1)

and (8. 2) for the g. and equations (9. 1) for  the g ,

M = 
~ ( 1 _ 1 ~

3)a 2 {F~0 + P 2 Fç + P [F  - - L/) F~01 
+ . ..} (10. 2)
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° =

+ p E F :_ ( ~~~~_ i / ) F:o + 3 1
z

v
.; Feo

d~ 1+ . . . } . (1 0. 3)

We note that it wil l  be possible to determine V , M and Q, up to terms of

relati ve order ~, soley on the basis of a consideration of the inte rio r solution

contr ibu t ions F , F . and F . , to the extent tha t it is possibl e to determine these
to U 12

fun ct t on5 w .t h o u t expl ic it  conside ration of the edge-zone solution portion , as

discus d o n  page Z 1 . and to the extent that F and F turn out to vanish
eo ei

altog eth er.

The sam e conclusions apply insofa r as the determination of the st iffness

coeff ic ients  K~~~. K y3 and K 3 is concerned , inasmuch as we have that

= M ( 0 ) / 3  , K~~3 = -0(0)/B , (10.4)

when V(0) = 0 , and

K3 = M~
(O ) / B  , (10 .5 )

whenQ(0)

EXPANSIONS FOR STRESSES

Introduction of the series expansions (7. 1) into equations (6. 23) and

(6. 24) gives as expansions for the stresses a , r , a~ , up to terms of re lative

orde r P,

= 1
EB

112~ g~
0 + p~ (g + g )  + P(g + g - ?7g~~~) + .. .J , (11 .1 )

3 1
T = - i / 2

[~~~~0 
+ p 2 g

/
1 + P (g~~+ g.’ - ?pg ’ ) + . . . ]  , (11 .2)

a0 = va + E~~[P 2 F. + P (F
1~ + F 0

) + .~~
.] (1 1.3)

Note that  (10 .4)  and ( 10. 5) are consistent with (4. 1) and (4. 2) in the l ight  of the
defining relation (6. 16) for  S.
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We no te th at , in con t ras t  to the results for de f lec t ion ,  axial moment

and t ransverse  resultant ,  the d i s t r ibu t ion  of s t ress  in the shell w ill , fo r  the

general case , be such tha t ed ge zone contr ibut ions com e out to be of a hi ghe r

order of magnitude than inter ior  region contr ibut ions . This is not so for  the

“exceptional” cases for which g and g vanish identicall y. The si gn i f i c a n ce

of this dis tinct ion wil l become apparent in our discus s ion of th e exce ptiona l

case of an 71-independent u r ’ in comparison wi th the case whe re  ~, r is assumed

to be a quadratic function of 77.

SOLUTION OF INTERIO R AND EDGE-ZONE
• DIFFERENTIA L EQUA TIONS

Dete rminat ion of the interior solution con t r ibu t ion, in accordance with

equa tions (8. 1) and (8 .2) ,  is the same as in the ear l ier  work concerned with th is

contribution only [1]. We find , upon taking account once for  all of conditions

for ~ = ~~ , with 4m4 
= 3(1 - p 2) ,  that

F. = (A cos m~ + B~~sin m~ )e
_m

~ ; n = 0 , 1 , (12 .1)

and

F. (A cos m~ + B sinm ~ )ein n n

- 
~~ 

- 2v) 16~~4 F ; n = 2 , 3 , ( 1 2 . 2 )

wi th the associated functions g. following from the above in accordance with

(8. 1) and (8. 2).

Having F. and g. , as indica ted above we now turn to the determination

of Fen and g ,  fo r n = 0 , 1, 2 , 3 , in accordance wi th equations (7 .4)  to (7 .8) .
• Wri t ing as before as differential  equations for  g and F , the seten en

g” + ~
2 g” + F” = 0 ; n 0 , 1 , (12 .3)en en en

g” + 02 g ” + F” = g’ - 77F” ; n = 2 , 3 , (12 .4)en en en en-a en-a

we take account of the f i rs t  relat ions in (7. 4) and (7.  5), in conjunction with  the

conditions for  ~ ~~, so as to establish as a system of three boundary condi t ions
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for ,p =

~1J ~~~~~~~~~~~~ = 0 , g ( ~~, ± l )  = 0 , (12 .5)
—t

• with the presence of the te rms F~~ (~ ) in (1 2 . 3) and (12 .4)  making it possible  to

satisf y the three conditions in (12 . 5), whe n w ithout these terms the f i r s t  condi-

tion (12 .5) would rule out si gnificant portions of the solutions of (12 .3 )  and (12. 4).

To see that this is in fact so we write (12 .3)  and (12 .4) in the d i f ferent ia ted

fo rm

= 0 ; n = 0, 1 , (12. 6)

g~~ + 0 3g~ ’ = g” - F” ; ii = 2 , 3 (12 .7 )
en en en-a en-2

and determine f i rs t  the solution of (1 2 . 6).

W e find , by separa t ion of var iables , tha t equation (12. 6) has par t icu lar

solutions

~enp = (C1 + C 3 c o s X ip)e~~~~~~ + ( D s i n u77)e ’
~~

’
~ (12 .8)

where C1, C2 , D, A and ~.L are arbi t rary cons tants. Satisfaction of the three

boundary conditions (12.5)  requires that these a rb i t r a ry  constants sat isf y the

rela t ions

C1 + C X ’sin A = 0 , C1 + C c o s X = 0 , D sin~L = 0 . ( 12 .9)

The conditions for non-trivial solutions in (12 .9)  are

tan A = A , sin M = 0 , (12 .10 )

for all positive roots A = A. and U 
~
1k for j , k = 1, 2 , 3 It is evident  that

the functions S1flU
~K77 fo rm an o r t h o n o r rn a l  system , such that ever y in tegrab le

odd function of 77 in the inte rval - 1 < 77 < I may be expanded in t e rms  of them.

Additionally, i t can be shown tha t th e set

cos A. - cos A . ’p
= 

X.cos A 
(12 .11)
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also forms an o rthonormal system , in suc h a way that  every integrable  even

function f( 77), in - 1 < 7 7< 1, with the additional p rope r ty  fdip = 0 , can be expanded

in terms of them.

We use the above p ropert ies  to cons t ruc t  the ser ies  solution

g~~ = C . &( fl)e ~ + Dk (sin u k7l)e (12. 12)
j, k= l

for rt = 0 , 1.

Before proceeding to the analogous solution of (12 .7) we return to equation
• ( 12 . 3) in order to establish , wi th  the help of the conditions F ( ~ ) F ’ (~ ) = 0 , as

solu tion F (~ ) which is associated wi th g in (12 . 12 ),

-A.~ /a
F = _aaEx:lc . e ; n = 0 , 1 . (12 . 13)en 

j = l  ~ in

• We now consider equation ( 12.4)  where  it remains to dete rmine the

appropri .~~e particular solution corresponding to a r ig h t -hand side which can

be seen , with the help of (1 2 . 11) to (12 . 13), to be of the form

/ s inX . 77 \ -A .~ /~
ECjn~~~ cos j~. +A .ip ,)e ~ + D k f l 3 O.I.~ cos 1.Lk77)e

We find that a part icular  solution of (12 .4)  with the above expression in place of

the ori g inal ri ght-hand s ide , which also sa t i s f ies  the three  boundary condit ions

(12 . 5), is such that altogether

-~.i ~ /cx

~~~ =E C 1
~~

(n
~~ 

‘~ + D k (siffl.L k77)e k

i Tp cos A. ip sin X.rp ~ -u

E 
k

• + C . I - - .j n -at X. Z A . c o s A .  ZA. st n A .
‘ 2  .1 .1 2 3

We note that it is this or t h ogonali ty p rope r ty of the func t ions  
~

. which  is res ponsib l e
for the advanta g es of the p rese nt solution of the gene ral problem , in compar ison
with the solution of the correspondin.g problem for the isotrop ic shell .
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cos l.Lkn - CO5
~

L
k ~~~~~~+f E D

k (
71s in4. 7 7 -  )e , (12. 14)

and

-~ t

F = -ar 3’V’A . tC . e ~ ~~~~~~~~~~~~~~~~~~~~~ e 
k (12.15)

en ~~~~j jn 2 k tc kn-a

for n = 2 , 3.

It now remains to determine the constants of integration C. and Dkn
in conjunction with , or preferrably subseque nt to, the determination of the constants

A and Bn in th e interio r solution portion F . as given by (12 . 1) and (12 . 2).

DERIVATION OF BOUNDARY CONDITIONS
• FOR DETERMINATION OF CONSTANTS IN gen

We beg in by recalling that the com plete system (7 .9)  to (7. 11) of

conditions at the edge 
~e = 0 of the shell had be ” .i reduced , insofa r as

possible , to a system of conditions for the F . a lone , consistin g o ...quations

(9.2) ,  (9. 3), (9.7) and (9. 10). A character is t ic  of these conditions is that in

them the effect of the ed ge-zone solution contribution manifests  itself throug h
the presence of certain definite integrals with respect to 77 of g ( ~ , 77) , but with-

out appearance of the g themselves. Consequently, these condi t ions do not

contain those elements of the complete sys tem of edge conditions (7. 9) t0 (7. 11)

which are required for a dete rmination of the series coefficients C . and D inj n kn

A re-inspection of equations (7.9) to (7. 11) makes it clear that the

remaining supplementation of the boundary conditions (9. 2), ( 9 .3 ) ,  (9 .7)  and

(9. 10) must come from equations (7 .9) , and no t from (7. 10) and (7 .1 1).

We obtain the f i rs t  of the remaining t ransfo rmed conditions by int roduc ing

(9. 7a) into (7 .9a) and by eliminating F ’ ( 0) from this relation by consider ing that
• J’1 g ’~0d77 = 0. This give s 

eo

1 . 1
02g ( O , r7) = s (77) - ~~J s(fl)d~ . (13. 1)
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• We finally introduce F.’ (O) from (9. 10) into (7. 9c) and consider that
• here ~~~g ’ d77 = o , and g ’ (0 , 17) = ~~(l  - 172)F” ( 0). Therewith equation (7. 9c)

becomes

g ’ (0 , ?7) flg ’ (0 , 77) - fj  ~1g ’ (0 , ?7) d77 - f(~ - 773)F~” (0) , (13.3)

for n = 2 , 3.

Having equations (13. 1) to (13. 3), in conjun ction with equations (12. 12)

and (12 . 13) for g and F , we are now in a position to ar r ive  at some general

• conclusions , without additional analysis. To whit

( 1) The f unctions g and F will vanish identically, for all ed ge

conditions cases here unde r consideration.

(2) The functions g and Feo 
will va nish iden tically for  the special case

s(~ ) = 1, but will otherw ide have a dominant effect in equations (11 .1)  to (11 .3 )

for the distr ibut ion of stress , and a direc t effec t of relative orde r Q 2 on the

values of the de flection V , in acco rdance with equation ( 10. 1), as well as an

indi reci .dfect of relative orde r ~~ on M and Q, in accordance with equations

(10.2),  (10. 3) and (9 .Zb) .

(3) The functions g and F will make a contribution of relative order

p on stresses, in accordance with (11. 1) to (11.3) but will make no such contri-

bution to V , M and Q.

THE CASE OF A UNIFORM EDGE RO TATION

W e assume now , as in [4], an axial-edge disp lacement u = -3 (r  - a ) ,

giving 
~ r = ~~~ and , in accordance with (6. 16), B = - ( 3/ 4 ) ( -3  ) (4 /3 )  = 3 and

therewith , in accordance with (6. 15),

s = 1 , (14.1)

and then , as discussed in the preceding section

= 0 , Feo = 0 . (14. 2)

• W ith (14.2),  and w ith g = 0 and F = 0 , we have , from (9. 2) ,  (9. 3), (9 .7 )

and (9. 10) as edge conditions for the inter ior  solution contr ibution
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F ’ (O) 1 , F~~(0) = F~~(0) F ’ (0) , (14. 3)

together with

F. (0) = F~~(0) = F~~(O) F. (0) = 0 , (14 .4)

for the case V(0) 0 , and

• F~” (0) = F~” (0) = F~~(0) = F~” (0) = 0 (14. 5)

for the case Q(0) = 0 , wi th equation ( 14 .3 ) ,  to ge ther with (14.4) or (14. 5), to be

used for the determination of the constants of inte g ration A and B in (12 . 1) andn n
(12 .2).

We omit the elementary calculations leading to the appropriate values

of the A and B . With their help th ere follows
n fl

V(0) = _ c 2a Z S [F~0(O) + PF . (0) + . . J

= 
cf

a [ i ~~~~~~
(.
~~~~~+ v ) ÷  J (14. 6)

M (0) = - 
2m~a~ 

~ fr~~(o) + p [ç(o) - - v) Fio (0)] + . .

= 

~~~~~~~~~~~~~~~~~~~ ~) ÷ •~•j (14 . 7)

for the case Q(0) = 0 , and

M (0) = 
3 13[l - 

~~~ 
+
~~

) + ...1 ‘ 

. 
(14 .8)

0( 0) = - 
~~~~~~ 

+
~

) ÷ . . .]  , (14 .9)

for the case V(0) = 0 where , it is r eca ll ed , 4m4 
= 3( 1 - 1, 2

) and p = c/a .

We note , specifically, that the results in (14. 6) to (14 . 9) have been obtaine d

without dete rmination of any edge-zone solution contribution and that fu r the rmore
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• the stiffness coefficients K~~ and Ky3 which are associated with (14. 8), in

accordance with (10.4),  as well as th e coefficient K 3 associated w ith (14. 7)

in accordance with (10. 5) are consiste nt w ith our earl ier  bound results in [4],

upon specializing these so as to correspond to the l imit ing-type assumption of a

medium unable to experience transverse normal strains .

Having determined the F. ,  we may now obtain the here leading terms

• g and F of the edge-zone solution portion of the complete solution of the

problem from equations (12. 14) and (12. 15), with C . = 0 and D. = 0 , in

• conjunction with the bounda ry condition (13 .3) w hic h now reduces to th e form

g ’ (0 , 77) = f(~
. - 772) :~~

Ml
(~J) , (14. 10)

or , equivalently, to

+ LL
kD

k3 
3Lfl

~•ik71 = - 4)F~” (o) (14. 11)

in the interval -1 <7 7 < 1. The orthono rmality proper t ies  of the functions 
~~

. and

then give

= 0 , A .C. = ~~F~” (0) ~~‘(~~2 - f) ~~.d71 = -F~” (0) (14. 12)

and therewith,

2 -ag = j 2.sA. ~~(??)e ~ )F~~(0) . (14 . 13)

A consideration of (14. 5) now gives that g vanishes throug hout , jus t  as

g and g , fo r the case Q(0) = 0. For the case V(0) = 0 the function F . , witheo ei 10

F~ (0) = 1 and F . (0) 0 , gives the relation F~’ ( 0) 2n-t~.

Having d:te rmined g i t becomes possible to evaluate the dis t r ibut ion of

stress in the shell , in accordance w ith equations ( 11. 1) to ( 1 1 . 3 ) ,  w i th these

equations reducing,  for the present  problem to the fo rm

= 
EB Q~~[g • + P~ g~~ + . . .]  , i. = ~

1
E3~~3 [g 0

~~ g ’ + . . . ]  (14.4)
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with a corresponding expression for a~ . We see once again that  the “e l e m e n t a r y”
• inte r io r contribution in (as well as in ~0) dominates the supp lementa ry  edge

zone contribution. At  the same time the edge zone cont r ibu t ion  i~ of the same order

of magnitude as the inter ior  contr ibut ion insofa r as the t ransverse  shear ing  s t r e s s

1’ is concerned. We no te , in pa rt i c u l a r , the poss ib i l i ty  of w r i t i n g, on the basis

(14. 14) and (14. 10), as express on for the edge shear d i s t r ibu t ion  for the case V(0) = C

~ 1
E30

2 ~~.{(l - ~ a) (1 - 772)1 (14. 15)

with th e second te rm inside the braces rep resen t in g th e ed ge zone effect , which

has the expected property of making no contribution to the shear stress resultant

0.

A CASE OF NON-UNIFORM EDGE ROTATIO N

W e now consider , as an example for  which the results of the standard

• two-dimensional shell theory are complemented in an essential way by three-

dimensional conside rat ions , the case for  which the axial ed ge disp lacement is

prescribed in the form

= 
~~o{~ 

- a) 
k (r~~ a)3] 

‘ ‘~, r = -3 [l + kii2] (15.1)

and therewith , in accordance with (6. 16) and (6. 15),

3 = _ 3~ (l ÷~~ k) , s(~ ) = ~ k/ S (15. 2)

We can now , as befo re , dete rm ine the f i r s t  te rm of the interior  solution

contribution, with the help of the ed ge conditions

F.’ (0) = 1 , F. (0) = 0 or F~’ (0) = 0 (15. 3)
10 10 — 10

which follow from (9. Za) and (9 .7a) ,  de pending on whethe r V(0) = 0 or Q(0) = 0

is prescribed , and we note that this determination does incorpo rate info rmation

on the nature of the shape functions in (15 . 1), by way of the def ining re l a t ion  (1 5. 2)

for 3.

Introduction of 
~~~ 

from equation (12. 12) into the relation
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3g

1 (0) = k
~~ ÷ k ~,

’
~
3 

, (15.4)

which follows from (13. 1) in conjun ction with (15.2)  now gives

c 
4 1(13 0 5 5

jo - 
t~~~

X2 1 + k/ 5  
Dk - . (1

I

Having g ,  and g . ,  and recalling that g~~ = 0 for all cases , we now have

as expressions for stresses , upto and including terms of relative order p 2 ,

a = 1 - ~~~~~~~~~ 
+ ~ T 

- ~‘2~~~~ 0 
(15 .6 )

• as well as a 0 = iia + E3P 2 F. where , notably, all components of str ess

are , within the narrow edge zone , of a hig her order  of ma gni tude tha n the

expected str esses associa ted with th e inte r ior solut ion cont ributions g. and F . .

We omit l isting explici t formulas for s t resses , a nd ins tead co nsider

equations (10. 1) to (10. 3) for V . M and Q, where we note that evaluation of the
i x

contr ibut ions of rela t ive orde r p 2 and p involves the relations

4rIk/3 ~~~~ 1 4c~
2k/ 3’~—~ 1F ( O) = 1 + k/ 5  ~~~~ 

‘ J F d ~ = 1 + k/ 5Le~~ 
(15.7)

• 3 0 3

Upon evaluation of (10. 1) to (10. 3), we now obtain in general iza t ion of

equations (14.6) to (14. 9)

I I
V(0) B p 2 41( 1

- Zm ’
k 

+ 
in /3G 1 + k/ 5

+ 1
4
~

k
~~5E ~~~) + + . . 

.} 
(15.8)

M~
(0) 

- ~ ~~~[3 E (1 
40k/ 3  ‘ç ’i\  v } (15 .9 )

Ec2 — 2m3 .a - m~ [20G \ 
- 1 ÷ k/ 5L4 A4 / 4j +

when Q(0)  = 0 , and
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= 

~~ { 
1 + 1 

~ 
- + + .. .} (5. 10)

I

- ~~~~~~~~~~ “ ‘c’.!..
Ec m2 at m V 3G 1+k/5L.iA 3

-
~~~ [~~~(‘ + +

~1 + 

. 

( 1 5 . 1 1)

when V(0) = 0.

In order to evaluate (15.8) to (15. 11), we note that with the successive

roots A.~~ 4.49, 7.72, 10.90, 14.07, 17.22, 20.37, 23.52, 26.67, 29.81
,

32. 99, (j + ~ )1T,... of equation (12. 10) the two sum s of ne gative powers of

come out to be

Ex 3 
~~ 0.015 , ~~~A 4 

~ 0 . 0 0 2 9  . (15. 12)

Insofar as the interpretat ion ...f equations (15 .8)  to (15. 11) is concerned , it

should be no ted tha t th e leading term s on the rig ht may be considered as equivalent

to the consequences of ordinary thin shell theory,  in conjunction w ith the solution

of the problem of how to introduce an appropria te  represen ta t ion  of the displace-

ment condition (15. 1) into this theory .  Additionally, we find that whi le the effect

of t ransverse shear defo rmabil ity and of cross-sect ional  width changes comes

out , as expected , to be of re lative order 0 , the effect of 77~ -term in u r comes

out to be of order p~~, with the numerically lar gest value s of these cor rec t ion

term s resulting upon let t ing k tend to infinity , with a finite limiting value of B k .

To obtain an impression of the numerical consequences of rep lacin g a

linear distribution ~ = u ( r  - a ) f c  by a pure cubic dis tr ibut ion ~i = u ( r  - a) 3/c 3

we set in equations ( 15.8)  to (15 .1 1) k = and B = - B k / 5  3u / 5c .  Therewith .

and with equations (15. 12) there  follows

~ + 0. ~~~~~~~~ - ina [20G ( 1 + 0 . 2)  + 

~
]} ( 1 5 .  1 3)
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~~ ~~~~-i~ {’ - ~~~~~~~~~ - o. a~ - ~1} ( 1 5 .  14)

when 0(0) = 0 ,  and

M (O) 

~ .~L ~c$1 + 0 15~~— ~~~ - + 
(15. 15)

Ec2 rn~~Ia m~~3G m2\200 4 J J

~ 
_
~~ ~:{i + 0. - ~~~[~~~(1 + 0.025) + 

(15. 16)

when V(0) = 0.

As might be expected , the shape correction terms with p 2 come out to be

numerically quite significant for moderately thin shells , say for 0 = 0. 1. Addi-

tionally, due to the change from a linear to a cubic edge displacement distr ibution

a significant modification of the terms with P is seen to occur in some of the above

expressions.
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